И.В. Ашметков, С.И. Мухин, Н.В. Соснин, А.П. Фаворский

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГЕМОДИНАМИКИ В АРТЕРИАЛЬНОЙ ЧАСТИ МОЗГОВОГО КРОВООБРАЩЕНИЯ

Препринт

Москва МАКС Пресс 2003 УДК 519.63

И.В. Ашметков, С.И. Мухин, Н.В. Соснин, А.П. Фаворский

Математическое моделирование гемодинамики в артериальной

части мозгового кровообращения:

Препринт. – М.: МАКС Пресс, 2003. – с.

В работе приведены результаты математического моделирования течений с растущей амплитудой в области тройников Виллизиева круга мозга. Показано, что в артериальной части церебрального кровообращения могут возникать условия, способствующие развитию колебаний с растущей амплитудой. Высказано предположение, что такие колебания амплитуды пульсовой волны давления могут способствовать возникновению аневризм.

E-mail: vmmus@cs.msu.su Тел.: 939-2195

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
Глава І. Параметры стационарного течения в артериальной части
церебрального кровообращения
§1. Граф головного мозга
§2. Параметры стационарного течения в сосудах церебрального
кровообращения9
§3. Свойства участков ветвления сосудов для артериальной части
церебрального кровообращения
Глава II. Моделирование условий, приводящих к течениям с растущей во
времени амплитудой в Виллизиевом круге головного мозга
§1. Аневризмы головного мозга
§2. Моделирование условий приводящих к течениям с растущей во времени
амплитудой в вертебробазилярном бассейне головного мозга
§3. Моделирование условий приводящих к течениям с растущей во времени
амплитудой в каротидной системе кровоснабжения головного мозга40
§4. Моделирование условий приводящих к течениям с растущей во времени
амплитудой в Виллизиевом круге головного мозга
§5. Исследование графа большого круга кровообращения
Литература

ВВЕДЕНИЕ

В данной работе приводятся результаты математического моделирования распространения пульсовой волны в артериальной части церебрального кровообращения.

Результаты ряда исследований показывают, что основными симптомами ряда заболеваний сердечно – сосудистой системы являются нарушения в распространении пульсовой волны. Эти нарушения могут иметь разнообразный характер, поэтому исследование процесса распространения пульсовой волны по кровеносной системе представляет собой интересную прикладную математическую задачу, имеющую медико – физиологическую область применения.

За основу в данной работе взят граф сосудов головного мозга, описанный в работе [1]. В первой главе работы приведены результаты расчетов стационарного решения уравнений гемодинамики на данном графе. Стационарное решение представлено в виде таблицы, где помимо стационарных значений давления и скорости приведен ряд параметров сосудов графа и полученного течения.

Известно, что пульсовая волна при прохождении участков ветвления сосудов претерпевает изменения своей амплитуды, при этом частично отражаясь от участка бифуркации. Коэффициенты, связывающие амплитуды пульсовой волны до и после участка ветвления сосуда обсуждались в работе [3] и получили название коэффициентов прохождения и отражения. Для найденного стационарного решения в каждой вершине графа вычислены значения коэффициентов прохождения пульсовой волны давления.

Также известно [6], что для определения характера поведения решения большую роль играют значения определителей матриц, составленных из коэффициентов прохождения и отражения в каждой вершине графа. Если произведение таких определителей для всех вершин графа по модулю больше единицы, то амплитуда пульсовой волны давления будет расти с течением времени. В первой главе для каждой вершины графа получены значения определителей матриц, составленных из коэффициентов прохождения и отражения в этой вершине. Установлено, что в Виллизиевом круге мозга находится ряд вершин, для которых определители матриц, составленных из коэффициентов прохождения и отражения, по модулю больше единицы.

Во второй главе работы приведены результаты математического моделирования гемодинамических течений с растущей во времени амплитудой в области тройников Виллизиева круга мозга. Известно [11], что в тройниках Виллизиева круга мозга наиболее часто возникают аневризмы головного мозга. Математическое моделирование проводилось отдельно в каротидном отделе Виллизиева круга мозга, отдельно в вертебро-базилярном отделе и в Виллизиевом круге в целом. Показано, что в артериальной части церебрального кровообращения могут возникать условия, способствующие развитию колебаний с растущей во времени амплитудой. Высказано предположение, что подобные колебания пульсовой волны давления могут способствовать возникновению аневризм.

В заключении проведено исследование артериальной части большого круга кровообращения в целом. Выявлены определенные закономерности между местами локализации аневризм и определителями матриц, составленных из коэффициентов прохождения и отражения в вершинах графа, расположенных в местах локализации аневризм.

Глава I. Параметры стационарного течения в артериальной части церебрального кровообращения.

§1. Граф головного мозга.

Для моделирования процессов гемодинамики в сложно организованной системе кровоснабжения головного мозга необходимо описание сосудистой топологии. Сопоставим формально кругу церебрального кровообращения граф, состоящий из ребер и вершин (рис. 1) [1]. Пусть ребра графа соответствуют либо реальным магистральным сосудам крупного и среднего диаметров, либо жгутам функционально – однородных сосудов кровеносной системы. Вершины графа соответствуют либо участкам ветвления сосудов, либо тканям, либо сердцу.

Ребра и вершины графа пронумерованы в произвольном порядке. Не ограничивая общности будем считать, что нумерация ребер графа выбрана в соответствии с рисунком 1, а нумерация вершин графа в соответствии с рисунком 2.

На рисунках 1а и 1б вершины, отмеченные кругами, соответствуют тканям, вершины, отмеченные квадратами, соответствуют участкам ветвления сосудов. Вершины графа, заключенные в окружности, являются граничными, причем вершина с номером 80 соответствует выходу из левого желудочка сердца в восходящую часть аорты, а вершина с номером 92 – венозному синусу сердца.

Кровоснабжение мозга осуществляется двумя парами магистральных артерий головы: по правой и левой внутренним сонным артериям (ребра графа с номерами 1-4, 77-80, 85-90) и по правой и левой позвоночным артериям (номера ребер 12,13). Причем две трети всего количества крови, притекающей к мозгу, доставляется по внутренним сонным артериям и одна треть поступает по позвоночным артериям. Первые образуют каротидную, вторые – вертебробазилярную систему кровоснабжения головного мозга.

На протяжении внутренних сонных артерий выделяются несколько отделов из которых наиболее интересным является супраклиноидный (ребра 1,2). От задней стенки супраклиноидного отдела отходит задняя соединительная артерия (ребра 21-24), играющая важную роль в замыкании артерий основания мозга и образовании Виллизиева круга (ребра 1-4, 10, 16, 19-24, 29-32). В этой же области происходит деление внутренней сонной артерии на среднюю мозговую артерию (ребра 17, 18, 39-42) и переднюю мозговую артерию (ребра 10, 16, 27, 28, 33-36). На своем протяжении передняя мозговая артерия делится на более мелкие ветви. Обе передних мозговых артерии соединяются между собой передней соединительной артерией (ребра 19, 20), формируя передние отделы Виллизиева круга.

Позвоночные артерии после входа в череп сливаются, образуя основную артерию (ребро 14). В своем дистальном отделе основная артерия делится на задние мозговые артерии (25, 26, 29-32, 45, 46, 49, 50), образуя бифуркацию основной артерии. На своем протяжении задняя мозговая артерия, как и передняя мозговая артерия, делится на более мелкие ветви. В дистальном отделе первого сегмента задней мозговой артерии отходит задняя соединительная артерия (ребра 21-24), которая соединяет между собой вертебро-базилярный и каротидный бассейны (задние отделы Виллизиева круга).

Мы будем рассматривать задачу моделирования с помощью численного решения уравнений гемодинамики церебрального кровообращения при средненормальных параметрах сосудов и сердечных выбросах. Целью моделирования является выявление качественных особенностей мозгового кровотока. Числовые значения параметров сосудов, а также начальные распределения скоростей, потоков и давлений по сосудам, необходимые для проведения расчетов, брались из работ [1, 7-10].

§2. Параметры стационарного течения в сосудах церебрального кровообращения.

На каждом ребре графа предполагается выполненной система уравнений гемодинамики [2]. В вершинах графа, соответствующих участкам ветвления кровеносных сосудов, предполагаются выполненными условия, выражающие закон сохранения потока жидкости и непрерывности давления. В работе [4] показано, что замена условия непрерывности давления на условие непрерывности интеграла Бернулли приводит К незначительным работе количественным изменениям результатов, поэтому В данной использовалось только условие непрерывности давления. В вершинах графа, соответствующих участкам фильтрации жидкости через ткань, предполагаются выполненными условия, выражающие закон сохранения потока жидкости и закон фильтрации Дарси [5]. В граничной вершине с номером 80 задан стационарный поток жидкости равный $Q_{\rm 80}$ =100 мл/с, а в граничной вершине с номером 92 задается стационарное давление равное $P_{92} = 0$ мм.рт.ст. Параметры ребер графа взяты в соответствии с работой [1].

Стационарное течение на графе сосудов церебрального кровообращения рассчитывалось с помощью программного комплекса CVSS10. В расчетах коэффициент кинематической вязкости жидкости полагался равным v = 0.04 см² / с. Начальные данные на графе выбирались согласно [1] кусочно – постоянными.

Такие начальные данные не являются решением уравнений гемодинамики на рассматриваемом графе. Поэтому при расчете происходит перестройка течения, которое за несколько сердечных циклов выходит на стационарный режим. Так как расчеты проводились с кинематической вязкостью отличной от нуля, то значения параметров установившегося стационарного режима течения в каждом сосуде зависят от пространственной координаты. Графики этих зависимостей имеют близкий к линейному вид. Параметры стационарного режима течения для графа, изображенного на рисунке 1, в случае выполнения на границах сосудов, входящих в участок ветвления, условия непрерывности давления, приведены в таблице 1. В отличие от предыдущих публикаций [1], в таблице 1 помимо основных характеристик стационарного течения приведен ряд параметров сосудов. Для каждого сосуда указаны характеристика его эластичности, скорость распространения в нем малых возмущений и время, за которое волна возмущения проходит сосуд в обоих направлениях.

В таблице 1 для каждого ребра графа приведены:

- Название сосуда головного мозга, соответствующего этому ребру. Те ребра графа, для которых не указано название, располагаются в венозной части церебрального кровообращения и носят вспомогательный характер.
- Длина сосуда, соответствующего каждому ребру графа;

 Номера начальной и конечной вершин графа, ограничивающих каждое ребро графа. В окрестности каждой из вершин указаны значения давления, скорости, площади поперечного сечения, а также времени, за которое волна возмущения проходит данное ребро в обоих направлениях и скорость распространения малых возмущений при стационарном режиме течения;

Таблица 1

№ ребра графа	Название сосуда	Длина сосуда, см	$\theta,$ $10^{-6}*$ $cM^{3}*$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> *, c	$\overline{\mathcal{C}}$, cm/c
1	Супраклиноидный отдел правой	0.35	0.12	6	79.86	107.10	0.10	0.0008	900.62
	внутренней сонной артерии	0.00		8	79.56	107.15	0.10	0.0008	900.40
2	Супраклиноидный отдел левой	0.35	0 12	7	79.38	84.92	0.10	0.0008	900.27
2	внутренней сонной артерии	0.55	0.12	9	79.15	84.95	0.10	0.0008	900.09
3	Область бифуркации	0.35	0.12	8	79.56	107.15	0.10	0.0008	900.40

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $c M^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> *, c	<i>с</i> , см∕с
				10	79.27	107.20	0.10	0.0008	900.18
4	Область бифуркации левой	0.35	0.12	9	79.15	84.95	0.10	0.0008	900.09
+	внутренней сонной артерии	0.33	0.12	11	78.92	84.98	0.10	0.0008	899.92
5		10.00	0.6	13	2.15	12.89	0.20	0.0349	573.33
9		10.00	0.0	17	1.65	12.91	0.20	0.0349	572.75
6		10.00	1 92	2	1.67	8.97	0.63	0.0349	572.77
0		10.00	1.02	18	1.56	8.97	0.63	0.0349	572.65
7		10.00	0.6	14	2.14	12.88	0.20	0.0349	573.32
		10.00	0.0	20	1.65	12.90	0.20	0.0349	572.75
8		10.00	0.6	16	2.93	33.32	0.20	0.0349	574.23
0		10.00	0.0	20	1.65	33.49	0.20	0.0350	572.75
Q		10.00	1 92	3	1.67	8.97	0.63	0.0349	572.77
9		10.00	1.52	21	1.56	8.97	0.63	0.0349	572.65
10	Правая передняя	1.35	0 14	10	79.27	51.45	0.06	0.0041	665.10
10	мозговая артерия	1.00	0.14	12	78.38	51.59	0.06	0.0041	664.22
11		10.00	0.6	17	1.65	33.52	0.20	0.0350	572.75
		10.00	0.0	22	2.93	33.34	0.20	0.0349	574.24
12	Правая	12.00	0.16	4	83.81	41.79	0.13	0.0266	903.53
12	артерия	12.00	0.10	23	80.82	42.00	0.13	0.0267	901.33
13	Левая	12.00	0.16	5	83.67	39.78	0.13	0.0266	903.43
13	артерия	12.00	0.10	23	80.82	39.96	0.13	0.0267	901.33
14		3 00	0.49	23	80.82	26.64	0.39	0.0067	901.33
14	Соповная артерия	5.00	0.40	24	80.67	26.64	0.39	0.0067	901.22
15		2.00	9.47	19	.02	20.11	3.08	.0070	569.93

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $c M^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , cm/c
				25	.01	20.11	3.08	.0070	569.92
10	Левая передняя	1.05	0.14	11	78.92	40.12	0.06	0.0041	664.75
10	мозговая артерия	1.35	0.14	15	78.23	40.21	0.06	0.0041	664.06
17	Правая средняя	1.65	0.00	10	79.27	77.36	0.10	0.0050	665.10
17	мозговая артерия	1.00	0.23	26	78.25	77.36	0.10	0.0050	664.09
10	Левая средняя	1.65	0.00	11	78.92	61.96	0.10	0.0050	664.75
10	мозговая артерия	1.05	0.23	27	78.10	61.96	0.10	0.0050	663.94
10	Передняя	0.12	0.00	12	78.38	8.06	0.01	0.0003	767.44
19	артерия	0.13	0.02	28	78.31	8.07	0.01	0.0003	767.37
20	Передняя	0.12	0.02	15	78.23	8.07	0.01	0.0003	767.30
20 соедини арте	артерия	0.13	0.02	28	78.31	8.07	0.01	0.0003	767.37
01	Правая задняя	0.70	0.05	6	79.86	16.02	0.02	0.0022	623.86
21	артерия	0.70	0.05	30	79.45	16.04	0.02	0.0022	623.43
22	Правая задняя	0.70	0.05	0	79.05	16.07	0.02	0.0022	623.00
22	артерия	0.70	0.05	30	79.45	16.04	0.02	0.0022	623.43
22	Левая задняя	0.70	0.05	7	79.38	7.56	0.02	0.0022	623.36
23	артерия	0.70	0.05	29	79.19	7.56	0.02	0.0022	623.15
24	Левая задняя	0.70	0.05	1	79.00	7.57	0.02	0.0022	622.95
24	артерия	0.70	0.05	29	79.19	7.56	0.02	0.0022	623.15
25	Левая задняя	0.50	0.11	1	79.00	97.41	0.06	0.0014	749.96
25	мозговая артерия	0.50	0.11	32	78.34	97.41	0.06	0.0014	749.38
26	Правая задняя	0.50	0 11	0	79.05	98.68	0.06	0.0014	750.01
20	мозговая артерия	0.00	0.11	31	78.38	98.68	0.06	0.0014	749.41
27	Левая передняя мозговая артерия	0.44	0.12	15	78.23	44.50	0.07	0.0012	749.28

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $c M^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , см/с
				33	77.96	44.50	0.07	0.0012	749.04
20	Правая передняя	0.44	0.10	12	78.38	53.13	0.07	0.0012	749.41
20	мозговая артерия	0.44	0.12	34	78.07	53.13	0.07	0.0012	749.14
20	Правая задняя	0.19	0.07	24	80.67	171.07	0.03	0.0006	666.50
29	мозговая артерия	0.10	0.07	35	79.86	171.49	0.03	0.0006	665.69
30	Правая задняя	0.19	0.07	0	79.05	171.90	0.03	0.0006	664.88
50	мозговая артерия	0.10	0.07	35	79.86	171.49	0.03	0.0006	665.69
31	Левая задняя	0 18	0.07	24	80.67	175.35	0.03	0.0006	666.50
51	мозговая артерия	0.10	0.07	36	79.84	175.79	0.03	0.0006	665.67
32	Левая задняя	0 18	0.07	1	79.00	176.23	0.03	0.0006	664.84
32	мозговая артерия	0.18	0.07	36	79.84	175.79	0.03	0.0006	665.67
33	Правая передняя	0.44	0 12	34	78.07	46.20	0.07	0.0012	749.14
55	мозговая артерия	0.44	0.12	37	77.83	46.20	0.07	0.0012	748.93
34	Правая передняя	0.44	0 12	13	77.63	39.17	0.07	0.0012	748.75
54	мозговая артерия	0.44	0.12	37	77.83	39.16	0.07	0.0012	748.93
35	Левая передняя	0.44	0 12	33	77.96	37.99	0.07	0.0012	749.04
55	мозговая артерия	0.44	0.12	38	77.77	37.99	0.07	0.0012	748.87
36	Левая передняя	0.44	0 12	14	77.57	39.15	0.07	0.0012	748.69
50	мозговая артерия	0.44	0.12	38	77.77	39.13	0.07	0.0012	748.87
	Анастомоз между правой и левой			37	77.83	2.07	0.13	0.0158	315.83
37	передними мозговыми артериями	2.50	1.25	39	77.80	2.07	0.13	0.0158	315.83
	Анастомоз между правой и левой			38	77.77	2.07	0.13	0.0158	315.83
38	передними мозговыми артериями	2.50	1.25	39	77.80	2.07	0.13	0.0158	315.83
39	Правая средняя мозговая артерия	1.75	0.27	26	78.25	48.50	0.15	0.0047	749.30

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , см/с
				40	77.83	48.54	0.15	0.0047	748.92
40	Левая средняя	1 75	0.27	27	78.10	38.71	0.15	0.0047	749.17
40	мозговая артерия	1.75	0.27	42	77.77	38.74	0.15	0.0047	748.87
41	Левая средняя	1 75	0 27	16	77.38	43.57	0.15	0.0047	748.53
71	мозговая артерия	1.75	0.27	42	77.77	43.53	0.15	0.0047	748.87
42	Правая средняя	1 75	0 27	22	77.45	43.60	0.15	0.0047	748.58
72	мозговая артерия	1.75	0.21	40	77.83	43.56	0.15	0.0047	748.92
	Анастомоз между правой и левой			40	77.83	2.99	0.18	0.0158	315.83
43	средними мозговыми артериями	2.50	1.75	41	77.80	2.99	0.18	0.0158	315.83
	Анастомоз между правой и левой	0.50	4 75	41	77.80	2.99	0.18	0.0158	315.83
44	средними мозговыми артериями	2.50	1.75	42	77.77	2.99	0.18	0.0158	315.83
45	Правая задняя	0.50	0 11	2	77.18	95.11	0.06	0.0014	748.35
10	мозговая артерия	0.00	0.11	43	77.80	94.97	0.06	0.0014	748.89
46	Левая задняя	0.50	0 11	3	77.15	95.08	0.06	0.0014	748.32
	мозговая артерия	0.00	0	44	77.77	94.94	0.06	0.0014	748.87
	Анастомоз между правой и левой			44	77.77	1.39	0.18	0.0158	315.83
47	задними мозговыми артериями	2.50	1.75	45	77.78	1.39	0.18	0.0158	315.83
48	Анастомоз между правой и левой задними	2.50	1.75	43	77.80	1.39	0.18	0.0158	315.83
48	артериями			45	77.78	1.39	0.18	0.0158	315.83
40	Правая задняя	0.50	0 11	31	78.38	91.74	0.06	0.0014	749.41
τU	Правая задняя мозговая артерия	0.50	0.11	43	77.80	91.74	0.06	0.0014	748.89
50	Левая задняя мозговая артерия	0.50	0.11	32	78.34	90.88	0.06	0.0014	749.38

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , cm/c
				44	77.77	90.88	0.06	0.0014	748.87
	Анастомоз между передней и задней			37	77.83	0.65	0.13	0.0285	315.83
51	правыми мозговыми артериями	4.50	1.25	47	77.82	0.65	0.13	0.0285	315.83
	Анастомоз между передней и задней			38	77.77	0.05	0.13	0.0285	315.83
52	левыми мозговыми артериями	4.50	1.25	46	77.77	0.05	0.13	0.0285	315.83
	Анастомоз между передней и задней			44	77.77	0.05	0.13	0.0285	315.83
53	левыми мозговыми артериями	4.50	1.25	46	77.77	0.05	0.13	0.0285	315.83
- 4	Анастомоз между передней и задней	4 50	4.05	43	77.80	0.65	0.13	0.0285	315.83
54	правыми мозговыми артериями	4.50	1.25	47	77.82	0.65	0.13	0.0285	315.83
	Анастомоз между передней и	4 50	4.04	38	77.77	0.62	0.30	0.0061	491.59
55	среднеи левыми мозговыми артериями	1.50	1.24	49	77.77	0.62	0.30	0.0061	491.59
	Анастомоз между передней и			42	77.77	0.62	0.30	0.0061	491.59
56	средней левыми мозговыми артериями	1.50	1.24	49	77.77	0.62	0.30	0.0061	491.59
	Анастомоз между передней и			37	77.83	0.37	0.30	0.0061	491.59
57	средней правыми мозговыми артериями	1.50	1.24	48	77.83	0.37	0.30	0.0061	491.59
58	Анастомоз между передней и средней правыми	1.50	1.24	40	77.83	0.37	0.30	0.0061	491.59
	мозговыми артериями			48	77.83	0.37	0.30	0.0061	491.59
	Анастомоз между средней и задней			40	77.83	1.58	0.22	0.0190	315.69
59	левыми мозговыми артериями	3.00	2.2	50	77.81	1.58	0.22	0.0190	315.69
60	Анастомоз между средней и задней	3.00	2.2	43	77.80	1.58	0.22	0.0190	315.69

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> *, c	\overline{c} , cm/c
				50	77.81	1.58	0.22	0.0190	315.69
	Анастомоз между средней и задней			42	77.77	0.08	0.22	0.0190	315.69
61	правыми мозговыми артериями	3.00	2.2	51	77.77	0.08	0.22	0.0190	315.69
	Анастомоз между средней и задней			44	77.77	0.08	0.22	0.0190	315.69
62	левыми мозговыми артериями	3.00	2.2	51	77.77	0.08	0.22	0.0190	315.69
63	Правая наружная	5.00	0 27	57	80.98	114.65	0.06	0.0220	482.44
00	сонная артерия	0.00	0.27	58	73.39	119.35	0.06	0.0226	473.25
64	Левая наружная	5.00	0.27	56	80.94	114.62	0.06	0.0220	482.44
04	сонная артерия	5.00	0.27	59	73.35	119.31	0.06	0.0226	473.19
65	Правая наружная	2.00	0.20	55	80.78	169.65	0.04	0.0140	364.69
00	сонная артерия	2.00	0.20	60	73.94	169.65	0.04	0.0140	364.69
66	Левая наружная	2.00	0.20	54	79.96	167.91	0.04	0.0139	364.69
00	сонная артерия	2.00	0.20	61	73.19	167.91	0.04	0.0139	364.69
67		1 00	1 0 2	17	1.65	14.51	0.63	0.0035	572.75
07		1.00	1.92	64	1.63	14.51	0.63	0.0035	572.73
69		1 00	1 0 2	20	1.65	14.50	0.63	0.0035	572.75
00		1.00	1.92	62	1.63	14.50	0.63	0.0035	572.73
60		1 00	1 0 2	62	1.63	24.47	0.63	0.0035	572.73
09		1.00	1.92	63	1.60	24.47	0.63	0.0035	572.70
70		1 00	1 02	64	1.63	24.59	0.63	0.0035	572.73
/0		1.00	1.92	65	1.60	24.59	0.63	0.0035	572.70
71		1.00	1 0 2	18	1.56	35.96	0.63	0.0035	572.65
		1.00	1.92	65	1.60	35.96	0.63	0.0035	572.70

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , см/с
72		1.00	1 02	21	1.56	35.84	0.63	0.0035	572.65
12		1.00	1.92	63	1.60	35.84	0.63	0.0035	572.70
72		1 00	1 0 2	61	1.64	9.97	0.63	0.0035	572.74
75		1.00	1.92	62	1.63	9.97	0.63	0.0035	572.73
74		1 00	1 0 2	60	1.65	10.08	0.63	0.0035	572.75
74		1.00	1.92	64	1.63	10.08	0.63	0.0035	572.73
75		1 00	1 0 2	58	1.62	11.37	0.63	0.0035	572.71
75		1.00	1.92	65	1.60	11.37	0.63	0.0035	572.70
76		1.00	1 02	59	1.62	11.36	0.63	0.0035	572.71
70		1.00	1.92	63	1.60	11.36	0.63	0.0035	572.70
77	Левая внутренняя	1.00	0.16	52	80.18	66.49	0.13	0.0022	900.86
	сонная артерия	1.00	0.10	67	79.78	66.53	0.13	0.0022	900.56
79	Левая внутренняя	1.00	0.16	7	79.38	66.58	0.13	0.0022	900.27
70	сонная артерия	1.00	0.10	67	79.78	66.53	0.13	0.0022	900.56
70	Правая	1 00	0.16	53	80.88	84.90	0.13	0.0022	901.37
13	артерия	1.00	0.10	66	80.37	84.97	0.13	0.0022	900.99
80	Правая	1 00	0.16	6	79.86	85.04	0.13	0.0022	900.62
00	артерия	1.00	0.10	66	80.37	84.97	0.13	0.0022	900.99
81	Правая	1 50	3 20	53	80.88	9.52	0.22	0.0117	257.76
01	артерия	1.50	0.29	68	80.83	9.52	0.22	0.0117	257.76
82	Правая	1 50	3 29	55	80.78	9.52	0.22	0.0117	257.76
02	артерия	1.00	0.20	68	80.83	9.52	0.22	0.0117	257.76
83	Левая глазничная	тазничная герия 1.50	3 20	52	80.18	21.07	0.22	0.0117	257.76
83	левая глазничная артерия		3.29	69	80.07	21.07	0.22	0.0117	257.76

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $c M^3 *$ c^2 / Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , см/с
84	Левая глазничная	1 50	3 20	54	79.96	21.07	0.22	0.0117	257.76
04	артерия	1.50	5.29	69	80.07	21.07	0.22	0.0117	257.76
95	Общая сонная	2.00	0.36	70	83.02	74.42	0.29	0.0045	902.95
00	артерия	2.00	0.50	71	83.41	74.38	0.29	0.0045	903.23
86	Общая сонная	2.00	0.36	72	83.67	82.55	0.29	0.0045	903.43
80	артерия	2.00	0.30	73	84.10	82.49	0.29	0.0045	903.74
97	Левая внутренняя	3 50	0 10	70	83.02	83.16	0.16	0.0078	902.95
07	сонная артерия	5.50	0.19	75	81.60	83.35	0.16	0.0078	901.91
00	Левая внутренняя	2 50	0.10	52	80.18	83.54	0.16	0.0078	900.86
00	сонная артерия	3.50	0.19	75	81.60	83.35	0.16	0.0078	901.91
80	Правая 89 внутренняя сонная артерия	3 50	0.19	72	83.67	81.93	0.16	0.0078	903.43
09		3.50	0.19	74	82.28	82.12	0.16	0.0078	902.40
00	Правая	2 50	0.10	53	80.88	82.31	0.16	0.0078	901.37
90	артерия	5.50	0.19	74	82.28	82.12	0.16	0.0078	902.40
01	Правая наружная	3 50	2.26	57	80.98	76.29	0.15	0.0297	257.88
51	сонная артерия	5.50	2.20	77	82.33	76.29	0.15	0.0297	257.88
02	Правая наружная	3 50	2.26	72	83.67	76.29	0.15	0.0297	257.88
92	сонная артерия	5.50	2.20	77	82.33	76.29	0.15	0.0297	257.88
03	Левая наружная	3 50	2.26	70	83.02	58.99	0.15	0.0286	257.88
30	сонная артерия	0.00	2.20	76	81.98	58.99	0.15	0.0286	257.88
۵ı	Левая наружная	3 50	2.26	56	80.94	58.99	0.15	0.0286	257.88
94	сонная артерия	0.00	2.20	76	81.98	58.99	0.15	0.0286	257.88
95	Правая наружная		0.04	57	80.98	19.55	0.22	0.0062	482.22
90	сонная артерия	1.50	0.34	78	80.88	19.55	0.22	0.0062	482.22

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> *, c	\overline{c} , см/с
96	Правая наружная	1 50	0.04	55	80.78	19.55	0.22	0.0062	482.22
90	сонная артерия	1.50	0.94	78	80.88	19.55	0.22	0.0062	482.22
97	Левая наружная	1 50	0 27	56	80.94	26.96	0.06	0.0062	482.44
51	сонная артерия	1.50	0.27	79	80.45	26.96	0.06	0.0062	482.44
08	Левая наружная	1 50	0 27	54	79.96	26.97	0.06	0.0062	482.39
30	сонная артерия	1.50	0.27	79	80.45	26.96	0.06	0.0062	482.44
90	Восходящая часть	6.00	62	80	84.20	19.98	5.00	0.0134	898.26
33	аорты	0.00	0.2	81	84.19	19.98	5.00	0.0134	898.26
100	Плечеголовной	3.00	1 76	81	84.19	27.21	1.18	0.0073	819.99
100	СТВОЛ	5.00	1.70	82	84.13	27.21	1.18	0.0073	819.99
101 Плечеголовной	Плечеголовной	2.00	1 76	73	84.10	27.21	1.18	0.0049	819.99
101	101 ствол	2.00	1.70	82	84.13	27.21	1.18	0.0049	819.99
102	Магистральные	2 00	0.19	73	84.10	27.24	0.29	0.0032	1265.49
102	артерии правои руки	2.00	0.10	83	83.96	27.25	0.29	0.0032	1265.41
103	Магистральные	2 00	0.19	4	83.81	27.25	0.29	0.0032	1265.34
105	руки	2.00	0.10	83	83.96	27.25	0.29	0.0032	1265.41
104	Резистивный	75.00	0 12	4	83.81	8.46	0.30	0.0950	1578.66
104	сосуд правой руки	75.00	0.12	84	82.21	8.47	0.30	0.0951	1577.99
105		2 00	0 47	25	0.01	20.11	3.08	0.0070	569.92
105		2.00	9.47	85	0.00	20.11	3.08	0.0070	569.91
106		5 00	6 77	81	84.19	14.90	4.55	0.0122	819.99
100	дуга аорты	5.00	0.11	86	84.17	14.90	4.55	0.0122	819.99
107	Aonto	5.00	6 65	86	84.17	10.28	4.47	0.0122	819.89
107	πορια	5.00	0.00	87	84.17	10.28	4.47	0.0122	819.89

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> [*] , c	\overline{c} , см/с
109	Общая сонная	2.00	0.36	86	84.17	74.28	0.29	0.0045	903.80
100	артерия	2.00	0.30	88	83.79	74.33	0.29	0.0045	903.52
100	Общая сонная	2.00	0.36	71	83.41	74.38	0.29	0.0045	903.23
103	артерия	2.00	0.50	88	83.79	74.33	0.29	0.0045	903.52
110	Магистральные	3.00	0 18	87	84.17	26.98	0.29	0.0048	1263.33
110	руки	0.00	0.10	89	83.95	26.98	0.29	0.0048	1263.33
111	Магистральные	4 00	0 18	5	83.67	26.98	0.29	0.0063	1263.33
	руки	ч.00	0.10	89	83.95	26.98	0.29	0.0063	1263.33
112	Резистивный	70.00	0 12	5	83.67	8.98	0.30	0.0887	1578.60
112	сосуд левой руки	70.00	0.12	90	82.08	8.99	0.30	0.0887	1577.93
113	3.00	12.78	85	0.00	5.89	17.00	0.0052	1153.09	
115	113 3.0	0.00	12.70	92	0.00	5.89	16.99	0.0052	1153.09
114		20.00	33.08	84	1.14	0.23	10.83	0.0699	572.16
114		20.00	00.00	93	1.14	0.23	10.83	0.0699	572.16
115		20.00	33.08	90	1.19	0.25	10.83	0.0699	572.22
110		20.00	00.00	94	1.19	0.25	10.83	0.0699	572.22
116		20.00	2 14	18	1.56	40.51	0.70	0.0702	572.65
110		20.00	2.17	95	0.68	40.65	0.70	0.0703	571.62
117		80.00	1 32	93	1.14	5.86	0.43	0.2797	572.16
,		00.00	1.02	97	0.32	5.88	0.43	0.2801	571.21
118		80.00	1.32	94	1.19	6.21	0.43	0.2796	572.22
110		00.00	1.52	98	0.32	6.24	0.43	0.2801	571.21
110		10.00	2 28	95	0.68	36.54	0.78	0.0351	571.62
113		10.00	2.00	97	0.32	36.59	0.78	0.0352	571.21

№ ребра графа	Название сосуда	Длина сосуда, см	θ , $10^{-6} *$ $cm^{3} *$ c^{2}/Γ	№№ граничных вершин ребра	Р, мм.рт.ст	U, см/с	S, <i>см</i> ²	<i>t</i> *, c	\overline{c} , cm/c
120		10.00	0.00	96	0.68	36.43	0.78	0.0351	571.62
120		10.00	2.50	98	0.32	36.49	0.78	0.0352	571.21
101	21 10.00	10.00	2 71	19	0.02	35.03	0.88	0.0352	570.86
121		2.71	97	0.32	34.99	0.88	0.0351	571.21	
122		10.00	2 71	19	0.02	35.12	0.88	0.0352	570.86
122		10.00	2.71	98	0.32	35.08	0.88	0.0351	571.21
102		20.00	2 14	21	1.56	40.40	0.70	0.0702	572.65
123		20.00	2.14	96	0.68	40.54	0.70	0.0703	571.62
124	Aooto	100.00	1 51	87	84.17	7.64	4.99	0.1901	1052.25
124	124 Aopta 100	100.00	4.01	99	84.05	7.64	4.99	0.1901	1052.17
125		10.00	0.08	91	38.17	449.04	0.08	0.0242	1022.77
125		10.00	0.08	100	83.99	424.32	0.09	0.0227	1052.14
126		50.00	1 51	99	84.05	7.64	4.99	0.0950	1052.17
120		50.00	4.51	100	83.99	7.64	4.99	0.0950	1052.14
127		170.00	10 11	85	0.00	2.78	13.72	0.5956	570.83
121		170.00	42.11	91	0.03	2.78	13.72	0.5956	570.86

§3. Свойства участков ветвления сосудов для артериальной части церебрального кровообращения.

Известно, что пульсовая волна при прохождении участков ветвления сосудов претерпевает изменения своей амплитуды. При этом наблюдается частичное отражение пульсовой волны от участка бифуркации. Коэффициенты, связывающие амплитуды пульсовой волны до и после участка ветвления сосуда обсуждались в работе [3].

В соответствии с [3], коэффициент, характеризующий изменение амплитуды пульсовой волны давления при прохождении ею участка ветвления из *i*-го сосуда в *j*-й сосуд обозначается $k_{i\rightarrow i}^{p}$ и имеет вид:

$$k_{i \to j}^{p} = \frac{2}{\sum_{i \in \Omega} \sqrt{R_{s,li} R_{\theta,li}} (1 - z_{l} \overline{m}_{l})}, \quad i \neq j.$$

$$\tag{1}$$

Коэффициент, связывающий амплитуды пульсовой волны давления до и после отражения ее от участка ветвления сосудов имеет вид:

$$k_{i \to i}^{p} = \frac{2}{\sum_{i \in \Omega} \sqrt{R_{s,li} R_{\theta,li}} (1 - z_{l} \overline{m}_{l})} - 1.$$
⁽²⁾

Здесь,

 $R_{s,li} = \frac{\overline{s}_l}{\overline{s}_i}$, где \overline{s}_l , \overline{s}_i - значение площади сечения l-го сосуда и i-го

сосуда в месте примыкания сосуда к рассматриваемому участку ветвления;

$$R_{\theta,li} = \frac{\theta_l}{\overline{\theta_i}}$$
, где $\overline{\theta_l}$, $\overline{\theta_i}$ - значение эластичности *l*-го сосуда и *i*-го сосуда в

месте примыкания сосуда к рассматриваемому участку ветвления;

$$\overline{m}_i = \frac{\overline{u}_i}{\overline{c}_i}$$
, где $\overline{c}_i = \sqrt{\frac{\overline{s}_i}{\rho \overline{\theta}_i}}$ - скорость распространения малых возмущений в

i-ом сосуде (скорость звука), ρ - плотность жидкости, которая считается постоянной, \overline{u}_i - значение скорости течения жидкости в месте примыкания *i*-го сосуда к рассматриваемому участку ветвления;

 z_i - величина, принимающая значение арифметического знака "+", если жидкость по *i*-му сосуду втекает в рассматриваемый участок ветвления и арифметического знака "-", если жидкость по *i*-му сосуду вытекает из участка ветвления;

 Ω - множество номеров сосудов входящих в рассматриваемый участок ветвления.

Общие свойства коэффициентов прохождения и отражения исследованы в работе [3]. В работе [6] для каждой вершины ветвления сосудов введена в рассмотрение матрица, составленная из коэффициентов прохождения и отражения, относящихся к этой вершине. Так для вершины графа с номером *m*, образованной из *n* ребер с номерами 1,...,*n* матрица из коэффициентов прохождения и отражения имеет следующий вид:

$$T_{m} = \begin{pmatrix} k_{1 \rightarrow 1}^{p} & \dots & k_{n \rightarrow 1}^{p} \\ \vdots & \ddots & \vdots \\ k_{n \rightarrow 1}^{p} & \dots & k_{n \rightarrow n}^{p} \end{pmatrix}$$
(3)

В каждый момент времени по каждому из сосудов, входящих в вершину графа, на эту вершину падает пульсовая волна давления. Волны давления частично проходят через вершину графа, частично отражаются от нее, формируя таким образом в каждый момент времени пульсовые волны, уходящие (отраженные) от данной вершины. Матрица T_m в каждый момент времени связывает между собой амплитуды волн давления, падающие на данную вершину графа и отраженные от данной вершины.

Блочная матрица вида

$$T = \begin{pmatrix} T_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & T_{m} \end{pmatrix}$$
(4)

состоящая из матриц коэффициентов прохождения и отражения всех вершин графа в любой момент времени связывает между собой падающие и отраженные волны на всем графе.

Важную роль для оценки качественного поведения решения уравнений гемодинамики играет определитель матрицы *T*. В работе [6] показано, что если этот определитель по модулю больше единицы, то амплитуда пульсовых волн будет неограниченно возрастать во времени.

Модуль определителя матрицы *T* равен произведению модулей определителей матриц коэффициентов прохождения и отражения всех вершин данного графа, то есть:

$$\left|\det T\right| = \left|\det T_1\right| \times \left|\det T_2\right| \times \dots \times \left|\det T_m\right|$$
(5)

Формула (5) означает, что каждая вершина графа вносит свой вклад в формирование общей картины на графе. В таблице 2 представлены значения коэффициентов прохождения и отражения и определителей матриц коэффициентов прохождения и отражения для каждой вершины артериальной части церебрального кровообращения.

Таблица 2

і графа i 22 22 26 26 26 26 26 26 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 25 32 32 32 32 32 32 32 12 103 104 104 104 104 104 104 111 111 111 112 112 112 112 112 11 112 1 11	j 22 26 30 24 25 32 32 32 32 32 32	$\begin{array}{c} k_{i \rightarrow j}^{p} \\ \hline -0.57 \\ \hline 1.02 \\ \hline 0.58 \\ \hline 0.43 \\ \hline 0.02 \\ \hline 0.58 \\ \hline 0.43 \\ \hline 1.02 \\ \hline -0.43 \\ \hline 1.02 \\ \hline -0.57 \\ \hline 1.02 \\ \hline 0.57 \\ \hline 0.43 \\ \hline 0.02 \\ \hline 0.57 \\ \hline 0.43 \\ \hline 0.02 \\ \hline 0.57 \\ \hline 0.45 \\ \hline 0.57 \\ \hline 0.45 \\ \hline 0.57 \\ \hline 0.$	
22 22 26 26 26 30 31 32 32 32 32 32 32 32 32 12 103 104 104 104 104 104 104 104 104 104 104 104 111 112 112	22 26 30 22 26 30 22 26 30 22 26 30 22 26 30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	-0.57 1.02 0.58 0.43 0.02 0.58 0.43 1.02 -0.42 -0.42 -0.57 1.02 0.57 0.43 0.02 0.57 0.43 0.02 0.57	1.026
22 26 26 26 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 24 25 32 32 32 32 32 32 32 32 32 32 32 32 12 103 104 104 104 104 104 104 103 13 13 13 13 11 112 12 <tr< td=""><td>26 30 22 26 30 22 26 30 22 26 30 22 26 30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32</td><td>1.02 0.58 0.43 0.02 0.58 0.43 1.02 -0.43 -0.42 -0.57 1.02 0.57 0.43 0.02 0.57 0.43 0.02 0.57</td><td>1.026</td></tr<>	26 30 22 26 30 22 26 30 22 26 30 22 26 30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32	1.02 0.58 0.43 0.02 0.58 0.43 1.02 -0.43 -0.42 -0.57 1.02 0.57 0.43 0.02 0.57 0.43 0.02 0.57	1.026
22 26 26 26 30 30 30 30 30 30 30 30 30 30	30 22 26 30 22 26 30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	0.58 0.43 0.02 0.58 0.43 1.02 -0.42 -0.57 1.02 0.57 0.43 0.02	1.026
26 26 26 26 26 30 30 30 30 30 30 30 30 30 30 30 30 30 24 24 25 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 12 12 103 104 104 104 104 104 103 13 13 13 11 112 12	22 26 30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	0.43 0.02 0.58 0.43 1.02 -0.42 -0.57 1.02 0.57 0.43 0.02	1.026
0 26 26 30 26 30 30 30 30 30 30 4 24 24 24 24 25 1 25 32 32 32 32 32 32 32 32 12 12 12 12 12 12 12 12 12 12 12 12 12	26 30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	0.02 0.58 0.43 1.02 -0.42 -0.57 1.02 0.57 0.43 0.02	1.026
26 30 30 30 30 30 30 30 30 30 30 30 30 24 24 25 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 12 12 103 104 104 104 104 104 103 13 13 13 13 111 112 112 112 112 1 1 <t< td=""><td>30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32</td><td>0.58 0.43 1.02 -0.42 -0.57 1.02 0.57 0.43 0.02</td><td></td></t<>	30 22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	0.58 0.43 1.02 -0.42 -0.57 1.02 0.57 0.43 0.02	
30 30 30 30 30 30 30 30 30 24 24 24 25 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 12 103 104 104 104 104 104 103 13 13 13 13 111 112 112 112 112 112 11 1	22 26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	0.43 1.02 -0.42 -0.57 1.02 0.57 0.43 0.02 0.57	
30 30 30 30 30 24 24 24 25 32 12 103 104 104 104 104 104 104 103 13 13 13 111 112 112 112 112 112 112 11	26 30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 32	1.02 -0.42 -0.57 1.02 0.57 0.43 0.02	
30 24 24 24 24 25 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 12 103 103 103 104 104 104 104 104 104 104 104 104 104 104 103 13 13 13 111 112 112 112 112 112 11 1 1 1 <td>30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32</td> <td>-0.42 -0.57 1.02 0.57 0.43 0.02</td> <td></td>	30 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	-0.42 -0.57 1.02 0.57 0.43 0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 25 32 24 25 32 24 25 32 24 25 32 24 25 32 24 25 32	-0.57 1.02 0.57 0.43 0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 32 24 25 32 24 25 32 24 25 32 24 25 32	1.02 0.57 0.43 0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 24 25 32 24 25 32 32 32 32 32	0.57 0.43 0.02	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 25 32 24 25 32	0.43	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 32 24 25 32	0.02	
$ \begin{array}{r} 25 \\ 32 \\ 32 \\ 32 \\ 32 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 1$	32 24 25 32	0.57	1.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 25 32	0.57	
$ \begin{array}{r} $	25 32	0.43	
$ \begin{array}{r} $	32	1.02	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-0.50	
$ \begin{array}{r} 12\\ 103\\ 4\\ 103\\ 103\\ 104\\ 104\\ 104\\ 104\\ 104\\ 104\\ 104\\ 104$	103	0.81	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104	0.68	—
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.50	—
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	-0 19	0 991
$ \begin{array}{r} 100\\ 104\\ 104\\ 104\\ 104\\ 104\\ 5 \\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 111\\ 112\\ 111\\ 112\\ 112$	104	0.68	0.001
$ \begin{array}{r} 101 \\ 104 \\ 104 \\ 104 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 111 \\ 112$	12	0.50	
$ \begin{array}{r} 104 \\ 104 \\ 13 \\ 13 \\ 13 \\ 13 \\ 111 \\ 111 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 12 \\ 12 \\ 1 \\ 1 \\ 21 \\ 6 \\ 21 \\ \end{array} $	103	0.81	
$ \begin{array}{r} 104 \\ 13 \\ 13 \\ 13 \\ 111 \\ 111 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 12 \\ 12 \\ 1 \\ 21 \\ 6 \\ 21 \\ \end{array} $	104	-0.32	
$ \begin{array}{r} 10 \\ 13 \\ 13 \\ 111 \\ 111 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 12 \\ 12 \\ 12 \\ 1 \\ 21 \\ 6 \\ 21 \\ \end{array} $	13	-0.50	
$ \begin{array}{r} 13\\ 13\\ 111\\ 5\\ 111\\ 112\\ 112\\ 112\\ 112\\ 112\\ $	111	0.80	
$ \begin{array}{r} 10 \\ 111 \\ 111 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 12 \\ 12 \\ $	112	0.68	-
$5 \qquad \begin{array}{c} 111 \\ 111 \\ 111 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 112 \\ 11 \\ 11 \\ 21 \\ 6 \\ 21 \\ \end{array}$	13	0.00	
$ \begin{array}{c} 111\\ 111\\ 112\\ 112\\ 112\\ 112\\ 11\\ 1\\ 1\\ 1\\ 21\\ 6\\ 21\\ \end{array} $	111		0 001
111 112 112 112 112 1 1 1 1 1 21 6 21	112	<u> </u>	0.891
112 112 112 1 1 1 1 21 6 21	13	0.50	
6 21	111	0.00 0.81	-
6 21	112		-
6 1 1 21	1	0.32	
6 21	21	-0.24	—
6 21	80	0.24	
6 21	00	0.99	_
0 Z	21	0.70	0.007
01	21		0.997
21	00	0.33	_
80	1 01	0.76	_
80	21	0.24	_
80	00	-0.01	0.000
(2	80	-0.23	0.998
2	80 2	0.24	_
2	80 2 23	0.99	_

	23	23	-0.76	
	23	78	0.99	
	78	2	0.77	
	78	23	0.24	
	78	78	-0.01	
	1	1	0.00	
	1	3	1.00	
8	3	1	1 00	1.000
	3	3	0.00	
	2	2	0.00	
	2	4	1 00	
9	4	2	1.00	1.000
	4	<u> </u>	0.00	
	3	3	-0.40	
	3	10	0.50	
	3	10	0.83	
	10	3	0.60	
10	10	10	0.50	0.036
10	10	10	-0.50	0.930
	10	2	0.85	
	17	10	0.60	
	17	10	0.50	
	17	17	-0.17	
	4	4	-0.39	
	4	16	0.50	
	4	18	0.84	
	16	4	0.61	0.040
11	16	16	-0.50	0.949
	16	18	0.84	
	18	4	0.61	
	18	16	0.50	
	18	18	-0.16	
	10	10	-0.05	
	10	19	0.14	
	10	28	0.92	
	19	10	0.95	
12	19	19	-0.86	1.007
	19	28	0.92	
	28	10	0.95	
	28	19	0.14	
	28	28	-0.08	
	16	16	-0.05	
	16	20	0.14	
	16	27	0.92	
	20	16	0.95	
15	20	20	-0.86	1.004
	20	27	0.92	
	27	16	0.95	
	27	20	0.14	
	27	27	-0.08	
23	12	12	-0.61	1.000
	12	13	0.39	
	12	14	1.21	
	13	12	0.39	

	13	13	-0.61	
	13	14	1.21	
	14	12	0.39	
	14	13	0.39	
	14	14	0.21	
	14	14	0.62	
	14	29	0.17	
	14	31	0.17	
	29	14	1.62	
24	29	29	-0.83	0.960
	29	31	0.17	
	31	14	1.62	
	31	29	0.17	
	31	31	-0.83	
	17	17	-0.14	
	17	39	1.16	
26	39	17	0.86	1.025
	39	39	0.16	
	18	18	-0.14	
	18	40	1.16	
27	40	18	0.86	1.020
	40	40	0.16	
	19	19	0.00	
	19	20	1.00	
28	20	19	1.00	1.000
	20	20	0.00	
	23	23	0.00	
	23	24	1.00	
29	24	23	1.00	1.000
	24	24	0.00	
	21	21	0.00	
	21	22	1.00	
30	22	21	1.00	1.000
	22	22	0.00	
	26	26	0.00	
	26	49	1.00	
31	49	26	1.00	1.000
	49	49	0.00	
	25	25	0.00	
	25	50	1.00	
32	50	25	1.00	1.000
	50	50	0.00	
	27	27	0.00	
	27	35	1.00	
33	35	27	1.00	1.000
	35	35	0.00	
	28	28	0.00	
~ <i>i</i>	28	33	1.00	4 000
34	33	28	1.00	1.000
	33	33	0.00	
35	29	29	0.00	1.000
	29	30	1.00	
	30	29	1.00	

	30	30	0.00	
	31	31	0.00	
	31	32	1.00	
36	32	31	1.00	1.000
	32	32	0.00	
	33	33	-0.89	
	33	34	0.11	
	33	37	0.50	
	33	51	0.50	
	33	57	0.77	
	34	33	0.11	
	34	34	-0.89	
	34	37	0.50	
	34	51	0.50	
	34	57	0.77	
	37	33	0.11	
	37	34	0.11	
37	37	37	-0.50	0.996
	37	51	0.50	
	37	57	0.77	
	51	33	0.11	
	51	34	0.11	
	51	37	0.50	
	51	51	-0.50	
	51	57	0.77	
	57	33	0.11	
	57	34	0.11	
	57	37	0.50	
	57	51	0.50	
	57	57	-0.23	
38	35	35	-0.89	1.002
	35	36	0.11	
	35	38	0.50	
	35	52	0.50	
	35	55	0.78	
	36	35	0.11	
	36	36	-0.89	
	36	38	0.50	
	36	52	0.50	
	36	55	0.78	
	38	35	0.11	
	38	36	0.11	
	38	38	-0.50	
	38	52	0.50	
	38	55	0.78	
	52	35	0.11	
	52	36	0.11	
	52	38	0.50	
	52	52	-0.50	
	52	55	0.78	
	55	35	0.11	
	55	36	0.11	
	55	38	0.50	

	55	52	0.50	
	55	55	-0.22	
	37	37	0.00	
20	37	38	1.00	1 000
39	38	37	1.00	1.000
	38	38	0.00	
	39	39	-0.82	
	39	42	0.18	
	39	43	0.49	
	39	58	0.54	
	39	59	0.61	
	42	39	0.18	
	42	42	-0.82	
	42	43	0.49	
	42	58	0.54	
	42	59	0.61	
	43	39	0.18	
	43	42	0.18	
40	43	43	-0.51	0.994
	43	58	0.54	
	43	59	0.61	
	58	39	0.18	
	58	42	0.18	
	58	43	0.49	
	58	58	-0.46	
	58	59	0.40	
	59	39	0.18	
	59	42	0.18	
	59	42	0.49	
	50	58	0.54	
	59	59	-0.39	
	43	43	0.00	
	40	40	1 00	
41	40	43	1.00	1.000
	44	40	0.00	
42	40	40	-0.82	1 004
42	40	40	0.02	1:004
	40	41	0.49	
	40	56	0.54	
	40	61	0.54	
	40	40	0.18	
		40	-0.82	
	41	41	-0.02	
	41	44 56	0.49	
	41	50	0.54	
	41	40	0.01	
	44	40 //1	0.10	
	44	41	0.10	
	44	44 56	-0.31	
	44	50	0.54	
	44	61	0.61	
	56	40	0.18	
	56	41	0.18	
	56	44	0.49	

	56	56	-0.46	
	56	61	0.61	
	61	40	0.18	
	61	41	0.18	
	61	44	0.49	
	61	56	0.54	
	61	61	-0.39	
	45	45	-0.91	
	45	48	0.62	
	45	49	0.09	
	45	54	0.44	
	45	60	0.77	
	48	45	0.09	
	48	48	-0.38	
	48	49	0.09	
	48	54	0.44	
	48	60	0.77	
	49	45	0.09	
	49	48	0.62	
43	49	49	-0.91	1.002
	49	54	0.44	
	49	60	0.77	
	54	45	0.09	
	54	48	0.62	
	54	49	0.09	
	54	54	-0.56	
	54	60	0.77	
	60	45	0.09	
	60	48	0.62	
	60	49	0.09	
	60	54	0.44	
	60	60	-0.23	
44	46	46	-0.91	1.002
	46	47	0.62	
	46	50	0.09	
	46	53	0.44	
	46	62	0.77	
	47	46	0.09	
	47	47	-0.38	
	47	50	0.09	
	47	53	0.44	
	47	62	0.77	
	50	46	0.09	
	50	47	0.62	
	50	50	-0.91	
	50	53	0.44	
	50	62	0.77	
	53	46	0.09	
	53	47	0.62	
	53	50	0.09	
	53	53	-0.56	
	53	62	0.77	
	62	46	0.09	

	62	47	0.62	
	62	50	0.09	
	62	53	0.44	
	62	62	-0.23	
	47	47	0.00	
	47	48	1.00	
45	48	47	1.00	1.000
	48	48	0.00	
		52	0.00	
	52	52	1.00	
46	52	53	1.00	1.000
	53	52	1.00	
	53	53	0.00	
	51	51	0.00	
47	51	54	1.00	1.000
	54	51	1.00	
	54	54	0.00	
	57	57	0.00	
48	57	58	1.00	1 000
-0	58	57	1.00	1.000
	58	58	0.00	
	55	55	0.00	
40	55	56	1.00	4 000
49	56 55 1.00	1.000		
	56	56	0.00	
	59	59	0.00	
	59	60	1.00	
50	60	59	1.00	1.000
	60	60	0.00	
	61	61	0.00	
	61	62	1 00	
51	62	61	1.00	1.000
	62	62	0.00	
	77	77	0.77	
	77	02	1.29	
	77	03	0.28	
	11	00	0.20	
50	83	11	0.23	0.000
52	83	83	0.38	0.896
	83	88	0.28	
	88	11	0.23	
	88	83	1.38	
	88	88	-0.72	
	79	79	-0.76	
	79	81	1.42	
	79	90	0.29	
	81	79	0.24	
53	81	81	0.42	0.952
	81	90	0.29	
	90	79	0.24	
	90	81	1.42	
	90	90	-0.71	
54	66	66	-0.80	1 056
0.	66	84	1.61	
	66	98	0.25	
			0.20	

	84	66	0.20	
	84	84	0.61	
	84	98	0.25	
	98	66	0.20	
	98	84	1.61	
	98	98	-0.75	
	65	65	-0.85	
	65	82	1.21	
	65	96	0.65	
	82	65	0.15	
55	82	82	0.21	1.003
	82	96	0.65	
	96	65	0.15	
	96	82	1.21	
	96	96	-0.35	
	64	64	-0.65	
	64	94	1.56	
	64	97	0.35	
	94	64	0.35	
56	94	94	0.56	1 255
00	94	97	0.35	1.200
	97	64	0.35	
	97	94	1.56	
	97	97	-0.65	
	63	63	-0.75	
	63	91	1 12	
	63	95	0.87	
	03	63	0.25	
57	91	01	0.12	1 226
57	91	91	0.12	1.230
	91	90	0.87	
	95	03	0.25	
	95	91	0.12	
	95	95	-0.13	
	79	79	0.00	
66	79	80	1.00	1.000
	80	79	1.00	
	80 77	00 77	0.00	
	77	70	0.00	
67	70	78	1.00	1.000
	78	70	1.00	
	78	78	0.00	
	81	81	0.00	
68	81	82	1.00	1.000
	82	81	1.00	
	82	82	0.00	
	83	83	0.00	
69	83	84	1.00	1.000
	84	83	1.00	
	84	84	0.00	
70	85	85	-0.46	0.797
	85	87	0.29	
	85	93	0.97	
	87	85	0.54	

	87	87	-0.71	
	87	93	0.97	
	93	85	0.54	
	93	87	0.29	
	93	93	-0.03	
	85	85	0.00	
	85	109	1.00	
71	109	85	1.00	1.000
	109	109	0.00	
	86	86	-0.47	
	86	89	0.28	
	86	92	0.94	
	89	86	0.53	
72	89	89	-0.72	0.745
	89	92	0.94	
	92	86	0.53	
	92	89	0.28	
	92	92	-0.06	
	86	86	-0.67	
	86	101	1.45	
	86	102	0.23	
	101	86	0.33	
73	101	101	0.45	1.013
	101	102	0.23	
	102	86	0.33	
	102	101	1.45	
	102	102	-0.77	
	89	89	0.00	
	89	90	1.00	
74	90	89	1.00	1.000
	90	90	0.00	
	87	87	0.00	
	87	88	1.00	
75	88	87	1.00	1.000
	88	88	0.00	
	93	93	0.00	
	93	94	1.00	
76	94	93	1.00	1.000
	94	94	0.00	
	91	91	0.00	
	91	92	1.00	
77	92	91	1.00	1.000
	92	92	0.00	
	95	95	0.00	
	95	96	1.00	
78	96	95	1.00	1.000
	96	96	0.00	
	97	97	0.00	
	97	98	1.00	
79	98	97	1.00	1.000
	98	98	0.00	
80	99	99	0.96	0.956
81	99	99	-0.11	0.996
0.				0.000

	r			
	99	100	0.23	
	99	106	0.88	
	100	99	0.89	
	100	100	-0.77	
	100	106	0.88	
	106	99	0.89	
	106	100	0.23	
	106	106	-0.12	
	100	100	0.00	
82	100	101	1.00	1.000
	101	100	1.00	
	101	101	0.00	
	102	102	0.00	
83	102	103	1.00	1 000
00	103	102	1.00	1.000
	103	103	0.00	
	106	106	-0.02	
	106	107	0.96	
	106	108	0.06	
	107	106	0.98	
86	107	107	-0.04	1.001
	107	108	0.06	
	108	106	0.98	
	108	107	0.96	
	108	108	-0.94	
	107	107	0.05	
	107	110	0.04	
	107	124	0.91	
	110	107	1.05	
87	110	110	-0.96	1.006
	110	124	0.91	
	124	107	1.05	
	124	110	0.04	
	124	124	-0.09	
	108	108	0.00	
00	108	109	1.00	1 000
00	109	108	1.00	1.000
	109	109	0.00	
	110	110	0.00	
00	110	111	1.00	1 000
89	111	110	1.00	1.000
	111	111	0.00	
	124	124	0.00	
00	124	126	1.00	4 000
99	126	124	1.00	1.000
	126	126	0.00	
	125	125	-0.96	
400	125	126	1.96	4 000
100	126	125	0.04	1.000
	126	126	0.96	
	1	ı		

.

Представляет интерес рассмотреть артериальную часть церебрального кровообращения отдельно от венозной части, так как именно в артериальной части находится большинство вершин, определители матриц коэффициентов прохождения и отражения которых по модулю больше единицы. Возможны ситуации, когда для отдельно выделенного подграфа артериальной части может выполнится достаточное условие возрастания амплитуды пульсовой волны. На рисунке 2 треугольниками обозначены вершины артериальной части мозгового кровообращения, в которых соответствующие определители по модулю больше единицы.

Рис. 2

Выделение подграфа связано с заданием определенных краевых условий в его граничных вершинах. На практике такие краевые условия могут возникать как результат взаимосвязанного воздействия различных физиологических и патологических факторов.

В качестве примера одного из таких факторов рассмотрим ситуацию тромбоза сосуда:

Можно предположить, что площадь поперечного сечения в начале сосуда с номером 1 становится постоянной во времени, то есть справедливо равенство $\frac{\partial S}{\partial t} = 0$. Тогда из первого уравнения гемодинамики $\frac{\partial S}{\partial t} + \frac{\partial Q}{\partial x} = 0$ следует, что в начале сосуда выполнено $\frac{\partial Q}{\partial x} = 0$, где Q - это поток через выделенное сечение сосуда.

Данная ситуация служит примером того, как могут появляться дополнительные граничные условия, которые появляясь в различных местах системы кровообращения, выделяют тем самым из целого графа некоторые подграфы.

Глава II. Моделирование условий, приводящих к течениям с растущей во времени амплитудой в Виллизиевом круге головного мозга.

§1. Аневризмы головного мозга.

Аневризма – это местное расширение просвета артерии вследствие изменений или повреждений ее стенок. Насчитывается около 30 разновидностей аневризм, которые принято различать по происхождению и механизмам развития. Одно из ведущих мест в патологии занимают аневризмы, которые развиваются в области тройников Виллизиева круга мозга (см. рис. 3).

Считается, что практически вся проблема аневризм мозга сводится к одному виду, происхождение которого, механизмы развития и многочисленные частные вопросы патологии являлись и являются до сих пор предметом научных разработок и оживленных дискуссий. Этот вид аневризм в [11] назван бифуркационно – гемодинамическим и характеризуется тем, что в качестве одного из основных начал в их образовании выступает совокупность взаимосвязанных гемодинамических факторов, действующих изнутри сосуда. Они обусловливают ту силу, суммарный эффект которой направлен изнутри сосуда и работает на растяжение (выпячивание) сосудистой стенки, обладающей высокой степенью эластичности.

Ведущим среди гемодинамических факторов является, конечно, артериальное давление. Оно имеет пульсирующий характер и вызывает растяжение сосудистой трубки. Но гемодинамические факторы – это не только пульсовая волна. Кровь вязкая несжимаемая жидкость, она течет по упругим натянутым трубкам в сложных условиях сосудистого русла. На основании мозга сосудистое русло сконструировано по уникальной схеме. Она не имеет аналогов в других частях тела. Навстречу друг другу идут два потока крови, распределение которой происходит в обычно замкнутом кольце (Виллизиев круг) по трем основным коллекторам – передние, средние и задние мозговые артерии.

Одной из целей данной работы является математическое моделирование течения крови в большом артериальном круге мозга. Предпринята попытка показать, что в Виллизиевом круге мозга могут возникать условия, способствующие усилению пульсовой волны внутри него. Напряжение, растягивающее сосудистую стенку прямо пропорционально давлению внутри сосуда, поэтому фактор усиления давления может оказывать серьезное влияние на выпячивание сосудистой стенки.

Большинство бифуркационно – гемодинамических аневризм располагаются в передних отделах артериального круга мозга, только пятая часть их в - задних. Они чаще всего встречаются на развилках внутричерепной части внутренней сонной артерии (супраклиноидный отдел) – 34-51% (рис. 3). На долю передних мозговых артерий и связывающих их соединительную ветвь (или ветви – их может быть несколько) приходится около трети бифуркационно – гемодинамических аневризм – 23-32%. Далее, в этом ряду по частоте появления аневризм стоят тройники средней мозговой артерии – 12-27% и артерии вертебробазилярного бассейна – около 10% [11].

§2. Моделирование условий приводящих к течениям с растущей во времени амплитудой в вертебробазилярном бассейне головного мозга.

Рассмотрим граф головного мозга, описанный в главе І. Предположим, что на этом графе возникли условия, выделяющие на нем подграф, состоящий

из задних мозговых и задних соединительных артерий (сосуды, ограниченные вершинами с номерами 0, 6, 30, 31, 35, 43), которые входят в вертебробазилярный бассейн кровоснабжения головного мозга (рис. 4)

Проведем на указанном подграфе расчеты с помощью программного комплекса CVSS. Параметры ребер подграфа и начальные распределения давления и скорости, необходимые для проведения расчетов, возьмем из таблицы 1.

Пусть на каждом ребре подграфа выполняются уравнения гемодинамики. В граничной вершине 35, соответствующей началу задней мозговой артерии предположим выполненным условие $\frac{\partial Q}{\partial x} = 0$. То же условие зададим в граничной вершине 6, соответствующей бифуркации внутренней сонной артерии. В вершине 43, соответствующей выходу из задней мозговой артерии, зададим фиксированный поток, равный стационарному.

В сосуде, ограниченном вершинами 6 и 30 зададим начальное возмущение стационарного значения давления $\varphi(x)$, определяемое формулой:

$$\varphi(x) = \begin{cases} 0 \ ii & .\delta o \ .n o \\ 1 \ ii & .\delta o \ .n o \\ .\delta o \ .n o \ .n o \\ .\delta o \ .n o \ .$$

Начальные возмущения стационарного значения скорости полагались равными нулю.

Для указанной конфигурации подграфа легко получить произведение модулей определителей матриц, составленных из коэффициентов прохождения и отражения для каждой вершины. Значения указанных определителей для вершин с номерами 0, 30, 31 возьмем из таблицы 2. Граничное условие $\frac{\partial Q}{\partial x} = 0$ в вершинах с номерами 6 и 35 дает значение определителя, равное 1 [6]. Заданный поток в вершине с номером 43 дает значение определителя, равное 1,27 [6]. В результате произведение определителей матриц, составленных из коэффициентов прохождения и отражения равно 1*1*1*1,026*1,27 = 1,3. Как указано в §3 главы I, в этом случае следует ожидать роста амплитуды пульсовой волны с течением времени.

Результаты расчетов приведены в виде графиков зависимости давления от времени в фиксированных точках каждого из сосудов выделенного подграфа.

На рисунке 5а представлен результат расчетов в правой задней соединительной артерии (ребра графа 21 и 22) в точке с координатой x = 0.5 см. На рисунках 5б, 5в и 5г представлены результаты расчетов в правой задней мозговой артерии (ребра 30, 26, 49) в точках с координатами x = 0.3 см, x = 0.1 см и x = 0.3 см соответственно.

Из приведенных графиков видно, что амплитуда пульсовой волны растет с течением времени. Также можно отметить, что характер нарастания амплитуды в сосудах задней мозговой артерии и в сосудах задней соединительной артерии отличается. В сосудах задней соединительной артерии рост амплитуды пульсовой волны происходит быстрее. Отметим, что задняя соединительная артерия отходит от супраклиноидного отдела внутренней сонной артерии, где по статистике наиболее часто встречаются аневризмы головного мозга.

§3. Моделирование условий приводящих к течениям с растущей во времени амплитудой в каротидной системе кровоснабжения головного мозга.

Рассмотрим граф головного мозга, описанный в главе І. Выделим на этом графе подграф, состоящий из передних мозговых и передних соединительных артерий (сосуды, ограниченные вершинами с номерами 10, 12, 28, 34, 37), которые входят в каротидную систему кровоснабжения головного мозга (рис. 6)

Проведем расчеты гемодинамических течений на указанном подграфе. Как и в §2, параметры ребер подграфа и начальные распределения давления и скорости, необходимые для проведения расчетов, возьмем из таблицы 1.

Вновь на каждом ребре подграфа предположим выполненными уравнения гемодинамики. В граничной вершине 10, соответствующей началу передней мозговой артерии зададим условие $\frac{\partial Q}{\partial x} = 0$. То же условие зададим в граничной вершине 28. В вершине 37, соответствующей выходу из передней мозговой артерии, зафиксируем поток, равный стационарному.

В сосуде, ограниченном вершинами 10 и 12 зададим начальное возмущение стационарного значения давления $\varphi(x)$, определяемое формулой:

 $\varphi(x) = \begin{cases} 0 \ ii & .\delta o \ .\tilde{n} o \\ 1 \ ii & .\delta o \ .\tilde{n} o \\ .\tilde{$

В данном случае произведение модулей определителей матриц, составленных из коэффициентов прохождения и отражения для каждой вершины подграфа, равно 1,15. Значения указанных определителей для вершин с номерами 12 и 34 берутся из таблицы 2. Граничное условие $\frac{\partial Q}{\partial x} = 0$ в вершинах с номерами 10 и 28 дает значение определителя, равное 1, а заданный поток в вершине с номером 37 дает значение определителя, равное 1,13 [6]. Как и в §2 настоящей главы, следует ожидать роста амплитуды пульсовой волны с течением времени.

Результаты расчетов приведены в виде графиков зависимости давления от времени в фиксированных точках каждого из сосудов выделенного подграфа.

На рисунках 7а, 7б и 7в представлены результаты расчетов в правой передней мозговой артерии (ребра графа 10, 28 и 33) в точках с координатами x = 1 см, x = 0.3 см и x = 0.3 см соответственно. На рисунке 7г представлен результат расчетов в передней соединительной артерии (ребро 19) в точке с координатой x = 0.1 см.

Из приведенных графиков видно, что амплитуда пульсовой волны растет с течением времени. Отметим достаточно интенсивный характер нарастания амплитуды в сосудах передней мозговой артерии. В месте соединения передней соединительной артерии и передней мозговой артерии часто встречаются аневризмы головного мозга (см. рис. 4).

§4. Моделирование условий приводящих к течениям с растущей во времени амплитудой в Виллизиевом круге головного мозга.

Рассмотрим граф головного мозга, описанный в главе І. Выделим на этом графе подграф, состоящий из сосудов Виллизиева круга головного мозга и основных подводящих к нему путей (рис. 7).

На указанном подграфе проводились численные расчеты. Как и ранее, параметры ребер подграфа и начальные распределения давления и скорости, необходимые для проведения расчетов, брались из таблицы 1.

В граничных вершинах 40 и 42, соответствующих выходу из средних мозговых артерий задавался поток, равный стационарному. В остальных граничных вершинах подграфа предполагалось выполненным условие $\frac{\partial Q}{\partial r} = 0$.

В сосуде, ограниченном вершинами 6 и 66 зададим начальное возмущение стационарного значения давления $\varphi(x)$, определяемое формулой:

$$\varphi(x) = \begin{cases} 0 \ ii & .\delta \circ .\tilde{n} \circ \\ 1 \ ii & .\delta \circ .\tilde{n} \circ \\ \delta .\tilde{n}$$

Такое же отклонение от стационарного значения давления зададим и в сосуде, ограниченном вершинами 7 и 67.

В данном случае произведение модулей определителей матриц, составленных из коэффициентов прохождения и отражения для каждой вершины подграфа, равно 1,06. В соответствии с §3 главы I, следует ожидать роста амплитуды пульсовой волны с течением времени. Результаты расчетов приведены в виде графиков зависимости давления от времени в фиксированных точках каждого из сосудов выделенного подграфа.

На рисунке 9а представлен результат расчета в супраклиноидном отделе внутренней сонной артерии (ребро 1, точка с координатой x = 0.3 см), а на рисунке 9б – в каротидном отделе (ребро 80, точка с координатой x = 0.5 см). График давления в передней мозговой артерии изображен на рисунке 9в (ребро 10, точка с координатой x = 0.1 см). Рисунок 9г соответствует передней соединительной артерии(ребро 19, точка с координатой x = 0.1 см). На рисунке 9д представлен результат расчетов в задней соединительной артерии (ребро 21, точка с координатой x = 0.5 см). Рисунок 9е соответствует задней мозговой артерии(ребро 30, точка с координатой x = 0.1 см).

Из приведенных графиков видно, что амплитуда пульсовой волны растет с течением времени. Также можно отметить, что характер нарастания амплитуды в сосудах Виллизиева круга отличается. Во внутренней сонной артерии рост амплитуды пульсовой волны ярко выражен, в то время как в передней соединительной артерии рост амплитуды практически отсутствует.

§5. Исследование графа большого круга кровообращения.

Рассмотрим граф большого круга кровообращения (рис. 10, 11), подробно изученный в работе [4] Нумерация ребер и вершин графа выбрана в соответствии с работой [4] На графе представлены магистральные артерии и вены большого круга кровообращения.

Рис. 10

Рис. 11

Известно [12], что аневризмы встречаются не только в сосудах мозгового кровообращения, но и в магистральных артериях грудной и брюшной полости (на рисунке выделены жирными линиями). По данным [12], соотношение аневризм аорты разной локализации следующее: аневризмы восходящей части аорты—22,9%, дуги аорты— 18,9%, грудной части аорты—19,5%, брюшной части аорты—37,2%.

Названия сосудов, соответствующих выделенным ребрам графа, представлены в таблице 3 .

Таблица 3

Номер ребра графа	Название сосуда
31	Дуга аорты
30	Аорта
53	Аорта
28	Грудная аорта

Номер ребра графа	Название сосуда
27	Верхний сегмент брюшной аорты
25	Средний сегмент брюшной аорты
9	Надпочечный сегмент брюшной аорты
10	Подпочечный сегмент брюшной аорты
15	Надбифуркационный сегмент брюшной аорты

В таблице 4 представлены значения модулей определителей матриц, составленных из коэффициентов прохождения и отражения в вершинах графа, соответствующих местам бифуркации аорты. Значения получены на основе стационарного фона, полученного в работе [4]

Номер вершины графа	Значение модуля
	определителя
31	1.002
54	1.002
57	1.002
28	1.005
30	1.005
23	1.001
9	1.01
52	1.001

Таблица 4

Из таблицы 4 видно, что все определители матриц, составленных из коэффициентов прохождения и отражения в вершинах графа, соответствующих местам бифуркации аорты, по модулю больше единицы. Предположим, что в артериальной части графа большого круга кровообращения возникли условия, выделяющие на нем подграф, состоящий из одного или нескольких вершин из таблицы 4. В этом случае, как и в §§2-4 настоящей главы, произведение определителей матриц, составленных из коэффициентов прохождения и отражения в вершинах выделяемого подграфа, будет по модулю больше единицы. Это в свою очередь означает, что на выделенном подграфе будут развиваться неустойчивые колебания с растущей амплитудой.

Проиллюстрируем последнее утверждение на примере подграфа, состоящего из ребер с номерами 27, 28 и 66.

На каждом ребре подграфа предположим выполненными уравнения гемодинамики. В граничной вершине 57, соответствующей началу грудной аорты зададим условие $\frac{\partial Q}{\partial x} = 0$. То же условие зададим в граничной вершине 30, соответствующей средней части брюшной аорты. В вершине с номером 62 зафиксируем поток, равный стационарному.

В сосуде с номером 28 зададим начальное возмущение стационарного значения давления.

В данном случае произведение модулей определителей матриц, составленных из коэффициентов прохождения и отражения для каждой вершины подграфа, равно 1,02. Результаты расчетов приведены в виде графиков зависимости давления от времени в фиксированных точках каждого из сосудов выделенного подграфа.

На рисунке 12а представлен результат расчетов в грудной части аорты (ребро графа № 28). На рисунке 12б представлен результат расчетов в верхнем сегменте брюшной аорты (ребро 27). Результаты расчетов показывают, что амплитуда пульсовой волны растет с течением времени.

ЗАКЛЮЧЕНИЕ

В данной работе продемонстрирована методика математического моделирования течений с растущей во времени амплитудой колебаний в тройниках Виллизиева круга мозга. Было установлено, что при выполнении

определенных условий в области Виллизиева круга локализуются участки, для которых выполняется достаточное условие роста амплитуды решений уравнений гемодинамики. Это означает, что на графе головного мозга может возникнуть ситуация, когда амплитуда пульсовых волн давления и скорости будет расти с течением времени. Численный расчет гемодинамических течений на выделенных локальных участках мозгового кровообращения подтверждает их неустойчивый характер. Подчеркнута зависимость между местами наиболее частого возникновения аневризм головного мозга и выполнимостью достаточного условия роста амплитуды решений уравнений гемодинамики в этих местах. Данная зависимость еще раз проиллюстрирована на примере графа большого круга кровообращения.

Литература

- В.А. Лукшин, С.И. Мухин, Т.В. Соколова, Н.В. Соснин, А.П. Фаворский. Математическая модель гидродинамики церебрального кровообращения. Препринт. М.: МАКС Пресс, 2001. - 20 с.
- М.В. Абакумов, И.В. Ашметков, Н.Б. Есикова, В.Б. Кошелев, С.И. Мухин, Н.В. Соснин, В.Ф. Тишкин, А.П. Фаворский, А.Б. Хруленко. Методика математического моделирования сердечно – сосудистой системы. Математическое моделирование, 2000 г., т.12 №2 с.106 – 117.
- С.И. Мухин, Н.В. Соснин, А.П. Фаворский, А.Б. Хруленко. Линейный анализ волн давления и скорости в системе эластичных сосудов. Препринт. М.: МАКС Пресс, 2001. - 37 с.
- В.Б. Кошелев, С.И. Мухин, Н.В. Соснин, А.П. Фаворский, А.Б. Хруленко. Математическое моделирование неспецифического аортоартериита. Препринт. М.: МАКС Пресс, 2001. - 52 с.
- М.В.Абакумов, К.В.Гаврилюк, Н.Б.Есикова, В.Б.Кошелев, А.В.Лукшин, С.И. Мухин, Н.В.Соснин, В.Ф.Тишкин, А.П.Фаворский. *Математическая модель гемодинамики сердечно-сосудистой системы*. Дифференциальные уравнения, 1997, т.33, N 7, 892-898.
- 6. И.В. Ашметков, С.И. Мухин, Н.В. Соснин, А.П. Фаворский. *Краевая задача для ЛГД уравнений на графе*. Препринт М.: МАКС Пресс, 2002. 88 с.
- Лелюк В.Г., Лелюк С.Э. Ультразвуковая ангиология. М: Реальное Время, 1999, 286 с.
- 8. Р. Шмидт, Г. Тевс. Физиология человека. т.2 М: Мир, 1996г, 313 с.
- 9. Сборник под редакцией А.Ф.Блюгера, А.Д. Валтнерис. *Кровообращение мозга и свойства крупных артерий в норме и патологии*. Рига, 1976г.
- М.Р. Сапин, Г.Л. Билич. Анатомия человека. кн.2, М: ОНИКС: Альянс В, 1999г, 432 с.
- Ю.А. Медведев, Д.Е. Мацко. Аневризмы и пороки развития сосудов мозга.
 Изд. РХНИ им. Проф. А.Л. Поленова, 1993. Том1 136с.
- 12. В.И. Бураковский, Л.А. Бокерия. Аневризмы грудной части аорты.