Вісник Харківського національного університету Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» УДК 519.633.2 №, 2003, с.

Моделирование движения потоков различной природы по наклонной поверхности методом частиц

С. В. Зеркаль, Е. В. Захаров, С. В. Богомолов

МГУ им. М.В.Ломоносова, факультет вычислительной математики и кибернетики, Россия

Natural hazards constitute now a socio-economic problem of increasing importance. We propose to consider here more specifically the question of debris flow and landslides that move down slopes under the force of gravity. A computational model to simulate of the phenomenon is presented in the paper. The authors have developed a variant of particle method to simulate the fluid problem based on the 1-D shallow water equations. Numerical experiments show the efficiency of the presented techniques for the long time calculation.

1. Оползни, сели, снежные лавины, паводки представляют собой один видов процессов, опасных природных являются крупным ИЗ препятствием при строительстве гражданских и промышленных зданий, дорог, освоении земель и добыче полезных ископаемых, представляют опасность для жизни людей. Защита от подобных стихийных бедствий природного характера на протяжении длительного периода остается одной из наиболее крупных проблем человечества. В настоящее время повсеместное осуществление мероприятий по инженерной защите территорий и объектов не всегда целесообразно и экономически оправдано. Поэтому изучение движения оползней, селей, снежных лавин и прогнозирование развития этих процессов являются актуальными и практически значимыми.

По характеру движения оползни-потоки, связные сели и снежные лавины близки к течению жидкости в каналах. Это позволяет для описания движения этих явлений использовать математическую модель теории мелкой воды (или теории длинных волн) [1, 2].

Первые результаты такого моделирования были получены авторами и представлены на X Международном симпозиуме «Методы дискретных особенностей в задачах математической физики» (МДОЗМФ-2001) [3].

2. Физическая модель движения потока состоит в следующем: поток [2, 4]тонкий, однородный рассматривается как (плотность, коэффициенты гидравлического и «сухого» трения - постоянны) слой несжимаемой жидкости. Считается, что начальный момент В смещающаяся часть грунтового (снежного) массива мгновенно дробится и превращается в «жидкость», которая затем «стекает» по склону (движение возникает из состояния покоя). Склон – переменной крутизны,

длинный и широкий, т.е. эффектами, связанными с взаимодействием с воздухом на боковых границах потока можно пренебречь. Движение потока подвержено действию силы тяжести и силы трения. Предполагается, что нет внешних притоков массы.

Рис. 1. Схема движения потока по склону.

Для описания движения потока по склону принимается система уравнений однослойной мелкой воды, которая в одномерном приближении и в консервативной форме имеет следующий вид [2, 4] (рис. 1):

$$\begin{cases} \frac{\partial hu}{\partial t} + \frac{\partial \left(hu^2 + \frac{1}{2}gh^2\cos\alpha\right)}{\partial x} = gh\sin\alpha - \tau_x & x \ge x_0 \\ \frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} = 0 & t \ge 0 \end{cases}$$
(1)

Здесь t – время, x – координата вдоль склона, u(x, t) – средняя по поперечному сечению потока скорость вдоль склона, h(x, t) – высота (мощность) потока, отсчитываемая перпендикулярно поверхности склона, $\alpha(x)$ – угол наклона склона к горизонту, τ_x – проекция силы трения на ось x.

Рассматривая вопрос о выражении для силы трения, принимается во внимание, что для потоков жидкостей выражение для силы трения имеет следующий вид: $\tau = k_{\Gamma}u^2$, где u – величина скорости в потоке, k_{Γ} – коэффициент трения. Данные о величинах k_{Γ} приводятся в гидравлических справочниках.

Для потоков, содержащих глину и камни, типа селей и глинистых растворов рекомендуются формулы вида $\tau = \tau_C + k_I u^2$ [2]. Величина τ_C называется сухим трением и вычисляется с помощью закона Кулона (трение пропорционально нормальному давлению). Для потока на поверхности это означает, что $\tau_C = k_C gh\cos\alpha$, где k_C – коэффициент кулоновского трения.

Поэтому выражение для τ_x принимает следующий вид [2]:

 $\tau_x = k_{\Gamma} u |u| + k_C g h \cos \alpha \, .$

Полученная таким образом система уравнения используется для описания движения снежных лавин, селей, горных обвалов, оползней-обвалов и оползней больших объемов.

Начальным условием для поставленной задачи будет распределение u(x, t) и h(x, t) на отрезке, малом по сравнению с характерным размером исследуемого потока и большом по сравнению с $h_0(x)$:

$$\begin{cases} u(x,t)_{t=0} = u_0(x) \\ h(x,t)_{t=0} = h_0(x) \end{cases} \qquad x \ge x_0.$$
(2)

Для расчета конкретных вариантов движения потоков различной природы по склону необходимо задать числовые значения коэффициентов трения k_C , k_Γ и геометрические характеристики склона и водного, селевого или оползневого потока, определяемые функциями $\alpha(x)$, $h_0(x)$, $u_0(x)$.

Необходимо отметить, что выражение для силы трения имеет различный вид для остановившихся и находящихся в движении частей потока. Это связано с тем, что пока активная сила (которая складывается из составляющей силы тяжести ($gh \sin \alpha$) и градиента гидростатического

давления $\left(\frac{\partial \left(\frac{1}{2}gh^2\cos\alpha\right)}{\partial x}\right)$ меньше чем сила трения, движение в

остановившей части потока не может начаться. Поэтому выражение для силы трения принимает следующий вид ($\tau_C = k_C gh \cos \alpha$) [5]:

1) при
$$u \neq 0$$
:
 $\tau_C = \tau_C \operatorname{sign}(u)$
(3a)

2) при *u* = 0:

$$\tau_{c} = \begin{cases} gh\sin\alpha - \frac{\partial(\frac{1}{2}gh^{2}\cos\alpha)}{\partial x}, & |gh\sin\alpha - \frac{\partial(\frac{1}{2}gh^{2}\cos\alpha)}{\partial x}| < |\tau_{c}| \\ \tau_{c} \operatorname{sign}\left(gh\sin\alpha - \frac{\partial(\frac{1}{2}gh^{2}\cos\alpha)}{\partial x}\right), & |gh\sin\alpha - \frac{\partial(\frac{1}{2}gh^{2}\cos\alpha)}{\partial x}| \geq |\tau_{c}| \end{cases}$$
(3b)

3. Для численного решения задачи (1)-(2) применяется вариант метода частиц [6, 7, 8], состоящий в адаптации формы частиц на каждом шаге по времени с целью выполнения условия слабой аппроксимации исходного решения. Рассматриваемый метод частиц можно отнести к классу методов дискретных особенностей.

В этом варианте метода частиц неизвестная функция представляется в виде конечной суммы δ -функций Дирака $u_N(x) = \sum_{i=1}^N c_i \delta(x - x_i)$ и находится обобщенное решение рассматриваемой задачи. Переходя к аппроксимации б-функций классическими функциями-«шапочками» $\omega^{(k)}(x)$ (т.к. по определению $\delta(x-x_i) = \lim_{k \to \infty} \omega^{(k)}(x-x_i)$, где $\omega^{(k)}(x)$ – неотрицательные, финитные функции), обобщенное решение заменяется классическим и искомая функция представляется в виде набора частиц. которых $x_i(t), i = 1,...,N$, становятся неизвестными. координаты В одномерном случае частицы имеют форму прямоугольников. Важным моментом является тот факт. что частицы-прямоугольники соприкасаются друг с другом (они не перекрывают друг друга и не образуют пустот между собой). Середины основания прямоугольников являются координатами частиц. Следует отметить важное свойство метода частиц – его консервативность, которая следует из способа построения.

В работах [8, 9] проведено исследование метода на задачах теории мелкой воды ($\tau_x = 0$, $\alpha = 0$) – задачи о распространении бора, о гидравлическом прыжке, о разрушении плотины.

Рис. 2. Аппроксимация частицами-прямоугольниками произвольной параболы. Точками обозначены центры частиц.

Также как и при численном решении задач теории мелкой воды [8] используется метод суммарной аппроксимации (или метод расщепления). Вводится набор частиц с координатами $x_i(t)$, i = 1,...,N. После чего решение задачи (1)-(2) сводится к последовательному решению уравнений:

1.
$$\frac{dx_i(t)}{dt} = u(x_i(t), t), \quad i = 1, ..., N$$
 (4a)

2.
$$\left(\frac{\partial hu}{\partial t}\right)_i = \left(gh\sin\alpha - \frac{\partial\left(\frac{1}{2}gh^2\cos\alpha\right)}{\partial x} - \left(k_{\Gamma}u|u| + k_{C}gh\cos\alpha\right)\right)_i, i = 1,..,N.$$
 (4b)

Алгоритм решения состоит в следующем:

1) решается уравнение (4а) по схеме Эйлера: $x_i^{n+1} = x_i^n + \tau u_i^n$, i = 1,..,N;

2) с целью выполнения условия соприкасаемости производится перестройка частиц, аппроксимирующих функции (*h* и *hu*), с сохранением их масс (то есть, с сохранением площади частиц-прямоугольников). Это приводит к изменению параметров частиц (размеров прямоугольников при постоянной площади);

3) вычисление новых значений масс частиц (площади прямоугольников), аппроксимирующих функцию *hu* (решается уравнения (4b));

4) вычисление нового поля скоростей (искомой функции и).

В ходе перестройки частиц используется следующая процедура, основанная на их попарном взаимодействии (рис. 3):

Рис. 3. Перестройка частиц.

а) при «наползании» частиц будет перестраиваться частица с меньшей высотой;

b) при «разлете» частиц перестраиваться будет частица с большей высотой;

с) при «наползании» (или «разлете») частиц с одинаковой высотой, перестраиваться будут в равной степени обе частицы.

Решение уравнения (4b) имеет ряд моментов, которые следует отметить. Вычисление силы трения осуществляется в соответствии с

формулами (3а)-(3b). Градиент давления вычисляется с помощью центральной разностной производной функции ($\frac{1}{2}gh^2\cos\alpha$) в точках $x_i(t)$, i = 2,...,(N-1). Для граничных частиц считается, что нет давления на поток извне. Поэтому в этих точках градиент давления заменяется на левую и правую разностную производную функции ($\frac{1}{2}gh^2\cos\alpha$) в точках $x_i(t)$, i = 1,...,N.

Данный алгоритм был реализован, и на его основе было проведено математическое моделирование движения водных, селевых и оползневых потоков по наклонным поверхностям. Основными входными параметрами построенной вычислительной системы являются коэффициенты трения k_C , k_Γ , профиль склона, определяемый функцией $\alpha(x)$, и характеристики исследуемого потока, определяемые функциями $h_0(x)$, $u_0(x)$. Основными выходными параметрами являются распределение мощности и скорости потока во времени и величина пройденного пути, как наиболее важные характеристики любого склонового процесса.

4. Далее приведем результаты расчета движения потоков различной природы по наклонной поверхности, полученные при решении задачи (1)-(2) методом частиц. На всех графиках по оси x нанесено значение x (м), точками изображены значения скоростей частиц u (м/с), прямоугольниками – частицы, отвечающие за мощность потока h (м).

На рис. 4 изображено численное решение движения жидкости (воды) при постоянном наклоне склона к горизонту ($\alpha = 3^{0}$). Коэффициенты трения принимали значения $k_{C} = 0$, $k_{\Gamma} = 0.01$. Шаг по времени брался равным $\tau = 0.003$, количество частиц N = 30. Движение воды моделировалось на отрезке времени, равном 16.9 часа. За этот срок фронт волны прошел расстояние в 52.5 км, средняя скорость фронта составила 3 км/час, глубина вала уменьшилась с 1.8 м (в начальный момент) до 0.01 м. На рис. 4 показано решение для моментов времени – 0 τ ; 1,000 τ ; 10,000 τ ; 100,000 τ ; 1,000,000 τ ; 2,000,000 τ . Для момента времени 2,000,000 τ приведено два графика. На втором графике увеличен масштаб по оси *y* с тем, чтобы показать получающееся значение высоты жидкости $h_{numer}(x, t)$.

В [4] справедливо замечено, что значения параметров k_C , k_Γ , вообще говоря, нельзя считать неизменными в процессе движения обвала или оползня, так как они зависят, например, от гранулометрического состава обвального потока или оползневого тела, который меняется и вдоль потока (особенно в случае оползней-обвалов) и во времени. Однако в настоящее время нет данных о закономерностях этих изменений, поэтому в расчетах все перечисленные параметры считаются константами, не зависящими от x и t. На основании данных о типичных углах β естественного откоса горных осыпей для коэффициентов сухого трения $k_C \approx tg\beta$ в работе [4] предлагается следующий диапазон изменений для k_C : 0.55 $\leq k_C \leq 0.85$, и для k_{Γ} : 0.01 $\leq k_{\Gamma} \leq 0.1$.

На рис. 5 приведены результаты расчета склоновых деформаций поверхности, имеющей наклон $\alpha = 24.7^{\circ}$. Коэффициенты трения принимали значения $k_C = 0.4$, $k_{\Gamma} = 0.1$, что близко к показателям грунтов в составе грязевого селя, шаг по времени брался равным $\tau = 0.01$,

количество частиц N = 30, первоначально вся селевая масса была расположена в области $0 \le x \le 348$ м. Движение потока моделировалось на отрезке времени, равном 5.5 часа. За это время фронт потока прошел расстояние в 23.7 км, высота вала уменьшилась с 3 м (в начальный

Рис. 5. Движение селевого потока по склону с постоянным уклоном $\alpha = 24.7^{\circ}$.

момент) до 0.15 м, средняя скорость фронта составила 4.3 км/час. На рис. 5 дано распределение грунта и скорость оползня для моментов времени – 0 τ ; 1,000 τ ; 10,000 τ ; 100,000 τ ; 1,000,000 τ ; 2,000,000 τ . Также как и для водного потока (рис. 4) для момента времени 2,000,000 τ приведено два графика и на втором графике увеличен масштаб по оси *y* с тем, чтобы показать получающееся значение высоты грунта *h*_{numer}(*x*, *t*).

При сравнении результатов в моменты времени 1,000,000т и 2,000,000т на рис. 4-5 видно, что при постоянном угле наклона склона движущийся

Рис. 6. Движение оползня-потока по склону с переменным углом наклона.

поток выходит на установившийся режим движения.

Приведем результаты расчета движения оползня-потока по склону с переменным углом наклона (рис. 6). Максимальное значение угла наклона склона к горизонту $\alpha_{max} = 40^{\circ}$, минимальное значение $\alpha_{min} = 5^{\circ}$. Коэффициенты трения принимали значения $k_C = 0.42$, $k_{\Gamma} = 0.13$, шаг по времени брался равным $\tau = 0.01$, количество частиц N = 30, первоначально вся масса оползня была расположена в области $0 \le x \le 35$ м. На рис. 6 дано распределение грунта в оползне-потоке для моментов времени – 0τ ; 1,000 τ ; 179,061 τ . Момент времени 179,061 τ соответствует остановке потока, когда в основной массе оползня скорость

равна нулю. За 29.9 мин. оползень-поток прошел расстояние в 242 м, высота вала уменьшилась с 17 м (в начальный момент) до 4 м, средняя скорость фронта составила ~ 0.27 м/сек.

5. В заключение хотелось бы отметить, что новизна данной работы состоит в развитии и применении варианта метода частиц, первоначально предложенного для решения системы уравнений изоэнтропического течения идеального газа с показателем адиабаты $\gamma = 2$ [6, 7], к моделированию движения потоков различной природы по склоновым поверхностям. Интерес и актуальность данной проблемы определяется важностью решаемых залач и тем. что в настояшее время предпринимаются немалые усилия к решению подобных задач различными вариантами метода частиц [10, 11].

ЛИТЕРАТУРА

- 1. Стокер Дж. Волны на воде. Математическая теория и приложения. М.: Изд-во иностр. литературы, 1959. 617 с.
- 2. Эглит М.Э. Неустановившиеся движения в руслах и на склонах. М.: Изд-во Моск. ун-та, 1986. 96 с.
- Богомолов С.В., Захаров Е.В., Зеркаль С.В. Математическое моделирование движения оползня-потока методом частиц // Труды Х Международного симпозиума «Методы дискретных особенностей в задачах математической физики (МДОЗМФ-2001)». – Херсон, 2001. – С. 69-71
- 4. Григорян С.С., Нилов Н.Н., Остроумов А.В., Федоренко В.С. Математическое моделирование горных обвалов и оползней больших объемов // Инженерная геология. – 1983. – № 6. – С. 61-73
- Эглит М.Э. Расчет параметров лавин в зоне торможения и остановки // Материалы гляциологических исследований. Хроника обсуждений. – 1982. – Вып. 43. – С. 35-39
- Богомолов С.В., Замараева А.А., Карабелли Х., Кузнецов К.В. Консервативный метод частиц для квазилинейного уравнения переноса // Журнал вычислительной математики и математической физики. – 1998. – Т. 38. – № 9. – С. 1602-1607
- 7. Богомолов С.В., Кузнецов К.В. Метод частиц для системы уравнений газовой динамики // Математическое моделирование. 1998. Т. 10. № 3. С. 93-100
- Богомолов С.В., Захаров Е.В., Зеркаль С.В. Моделирование волн на мелкой воде методом частиц // Математическое моделирование. – 2002. – Т. 14. – № 3. – С. 103-116
- Зеркаль С.В. Апостериорная оценка погрешности метода частиц на моделях теории мелкой воды // Прикладная математика и информатика: Труды факультета ВМиК МГУ им. М.В.Ломоносова. Под ред. Д.П.Костомарова, В.И.Дмитриева. – 2002. – № 10. – С. 90-101
- Rodriguez M.X., Bonet J., Kulasegaram S., Lok T.-S.L. Mesh-free Numerical Simulation of Debris Flow Avalanches // Proceedings of ann. conf. Assoc. of Compt. Mech. (ACME), UK – 2000

 Kulasegaram S., Bonet J., Lok T.-S.L., Rodriguez-Paz M. Corrected Smooth Particle Hydrodynamics – A Meshless Method for Computational Mechanics // CD-Rom Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering "ECCOMAS-2000". – Barcelona, – 11-14 September 2000. – 11 p.